Spinal Muscular Atrophy Panel

SEQmethod-seq-icon Our Sequence Analysis is based on a proprietary targeted sequencing method OS-Seq™ and offers panels targeted for genes associated with certain phenotypes. A standard way to analyze NGS data for finding the genetic cause for Mendelian disorders. Results in 21 days. DEL/DUPmethod-dup-icon Targeted Del/Dup (CNV) analysis is used to detect bigger disease causing deletions or duplications from the disease-associated genes. Results in 21 days. PLUSmethod-plus-icon Plus Analysis combines Sequence + Del/Dup (CNV) Analysis providing increased diagnostic yield in certain clinical conditions, where the underlying genetic defect may be detectable by either of the analysis methods. Results in 21 days.

Test code: NE1801

The Blueprint Genetics Spinal Muscular Atrophy Panel is a 27 gene test for genetic diagnostics of patients with clinical suspicion of distal hereditary motor neuropathy or spinal muscular atrophy.

Spinal muscular atrophies (SMAs) are inherited in an autosomal dominant, autosomal recessive or X-linked manner. In addition to deletion or gene conversion of SMN1 and copy number variations of SMN2, numerous genes exist where mutations have been described that result in a specific type of SMA. With this panel, the systematic screening of these additional SMA genes is feasible in a clinical setting.

About Spinal Muscular Atrophy

Spinal muscular atrophies (SMAs) are a genetically and clinically heterogeneous group of rare debilitating disorders characterized by the degeneration of lower motor neurons and subsequent atrophy of various muscle groups in the body. While some SMAs lead to early infant death, other types permit normal adult life with only mild weakness. Based on the type of muscles affected spinal muscular atrophies can be divided into proximal and distal SMAs. The distal SMAs significantly overlap with distal hereditary motor neuropathies and this has been taken into account in the panel design. While the presence of several symptoms may point towards a particular genetic disorder of the spinal muscular atrophy group, the actual disease can be established with full certainty only by genetic testing which detects the underlying genetic mutation.

Availability

Results in 3-4 weeks. We do not offer a maternal cell contamination (MCC) test at the moment. We offer prenatal testing only for cases where the maternal cell contamination studies (MCC) are done by a local genetic laboratory. Read more.

Genes in the Spinal Muscular Atrophy Panel and their clinical significance
GeneAssociated phenotypesInheritanceClinVarHGMD
AARSEpileptic encephalopathy, early infantile, Charcot-Marie-Tooth diseaseAD/AR415
ASAH1Spinal muscular atrophy with progressive myoclonic epilepsy, Farber lipogranulomatosisAR1153
ATP7AMenkes diseaseXL105335
BICD2Childhood-onset proximal spinal muscular atrophy with contracturesAD819
BSCL2Lipodystrophy, congenital generalized, Encephalopathy, progressiveAR2043
CHCHD10Myopathy, isolated mitochondrialAD616
DCTN1Perry syndrome, Neuropathy, distal hereditary motorAD1140
DNAJB2Spinal muscular atrophy, distal, Charcot-Marie-Tooth diseaseAR95
DYNC1H1Spinal muscular atrophy, Charcot-Marie-Tooth disease, Mental retardationAD3453
EXOSC3Pontocerebellar hypoplasiaAR918
EXOSC8Pontocerebellar hypoplasiaAR22
FBXO38Neuronopathy, distal hereditary motorAD13
GARSNeuropathy, distal hereditary motor, Charcot-Marie-Tooth diseaseAD932
HEXATay-Sachs disease, GM2-gangliosidosis, Hexosaminidase A deficiencyAR69182
HSPB1Neuropathy, distal hereditary motor, Charcot-Marie-Tooth diseaseAD1235
HSPB3Neuronopathy, distal hereditary motorAD11
HSPB8Charcot-Marie-Tooth disease, Distal hereditary motor neuronopathyAD36
IGHMBP2Spinal muscular atrophy, distal, Charcot-Marie-Tooth diseaseAR32113
LAS1LSpinal muscular atrophy with respiratory distressXL33
PLEKHG5Spinal muscular atrophy, Charcot-Marie-Tooth diseaseAR77
REEP1Spastic paraplegia, Distal hereditary motor neuronopathyAD1154
SCO2Leigh syndrome, Hypertrophic cardiomyopathy (HCM), Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency, MyopiaAD/AR1732
SLC5A7Neuronopathy, distal hereditary motorAD614
SMN1*Spinal muscular atrophyAR21111
SMN2*Spinal muscular atrophyAD8
TRPV4Metatropic dysplasia, Spondyloepiphyseal dysplasia Maroteaux type, Parastremmatic dwarfism, Hereditary motor and sensory neuropathy, Spondylometaphyseal dysplasia Kozlowski type, Spinal muscular atrophy, Charcot-Marie-Tooth disease, Brachyolmia (autosomal dominant type), Familial Digital arthropathy with brachydactylyAD5371
UBA1Spinal muscular atrophy, infantileXL34
VAPBAmyotrophic lateral sclerosis, Spinal muscular atrophy, late-onset, FinkelAD28
VRK1Pontocerebellar hypoplasiaAR68
  • * Some regions of the gene are duplicated in the genome leading to limited sensitivity within the regions. Thus, low-quality variants are filtered out from the duplicated regions and only high-quality variants confirmed by other methods are reported out. Read more.

Gene, refers to HGNC approved gene symbol; Inheritance to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL); ClinVar, refers to a number of variants in the gene classified as pathogenic or likely pathogenic in ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/); HGMD, refers to a number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/). The list of associated (gene specific) phenotypes are generated from CDG (http://research.nhgri.nih.gov/CGD/) or Orphanet (http://www.orpha.net/) databases.

Blueprint Genetics offers a comprehensive Spinal Muscular Atrophy Panel that covers classical genes associated with distal hereditary motor neuropathy and spinal muscular atrophy. The genes are carefully selected based on the existing scientific evidence, our experience and most current mutation databases. Candidate genes are excluded from this first-line diagnostic test. The test does not recognise balanced translocations or complex inversions, and it may not detect low-level mosaicism. The test should not be used for analysis of sequence repeats or for diagnosis of disorders caused by mutations in the mitochondrial DNA.

Analytical validation is a continuous process at Blueprint Genetics. Our mission is to improve the quality of the sequencing process and each modification is followed by our standardized validation process. Average sensitivity and specificity in Blueprint NGS Panels is 99.3% and 99.9% for detecting SNPs. Sensitivity to for indels vary depending on the size of the alteration: 1-10bps (96.0%), 11-20 bps (88.4%) and 21-30 bps (66.7%). The longest detected indel was 46 bps by sequence analysis. Detection limit for Del/Dup (CNV) analysis varies through the genome depending on exon size, sequencing coverage and sequence content. The sensitivity is 71.5% for single exon deletions and duplications and 99% for three exons’ deletions and duplications. We have validated the assays for different starting materials including EDTA-blood, isolated DNA (no FFPE) and saliva that all provide high-quality results. The diagnostic yield varies substantially depending on the used assay, referring healthcare professional, hospital and country. Blueprint Genetics’ Plus Analysis (Seq+Del/Dup) maximizes the chance to find molecular genetic diagnosis for your patient although Sequence Analysis or Del/Dup Analysis may be cost-effective first line test if your patient’s phenotype is suggestive for a specific mutation profile.

The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. The highest relevance in the reported variants is achieved through elimination of false positive findings based on variability data for thousands of publicly available human reference sequences and validation against our in-house curated mutation database as well as the most current and relevant human mutation databases. Reference databases currently used are the 1000 Genomes Project (http://www.1000genomes.org), the NHLBI GO Exome Sequencing Project (ESP; http://evs.gs.washington.edu/EVS), the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org), ClinVar database of genotype-phenotype associations (http://www.ncbi.nlm.nih.gov/clinvar) and the Human Gene Mutation Database (http://www.hgmd.cf.ac.uk). The consequence of variants in coding and splice regions are estimated using the following in silico variant prediction tools: SIFT (http://sift.jcvi.org), Polyphen (http://genetics.bwh.harvard.edu/pph2/), and Mutation Taster (http://www.mutationtaster.org).

Through our online ordering and statement reporting system, Nucleus, the customer can access specific details of the analysis of the patient. This includes coverage and quality specifications and other relevant information on the analysis. This represents our mission to build fully transparent diagnostics where the customer gains easy access to crucial details of the analysis process.

In addition to our cutting-edge patented sequencing technology and proprietary bioinformatics pipeline, we also provide the customers with the best-informed clinical report on the market. Clinical interpretation requires fundamental clinical and genetic understanding. At Blueprint Genetics our geneticists and clinicians, who together evaluate the results from the sequence analysis pipeline in the context of phenotype information provided in the requisition form, prepare the clinical statement. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals, even without training in genetics.

Variants reported in the statement are always classified using the Blueprint Genetics Variant Classification Scheme modified from the ACMG guidelines (Richards et al. 2015), which has been developed by evaluating existing literature, databases and with thousands of clinical cases analyzed in our laboratory. Variant classification forms the corner stone of clinical interpretation and following patient management decisions. Our statement also includes allele frequencies in reference populations and in silico predictions. We also provide PubMed IDs to the articles or submission numbers to public databases that have been used in the interpretation of the detected variants. In our conclusion, we summarize all the existing information and provide our rationale for the classification of the variant.

A final component of the analysis is the Sanger confirmation of the variants classified as likely pathogenic or pathogenic. This does not only bring confidence to the results obtained by our NGS solution but establishes the mutation specific test for family members. Sanger sequencing is also used occasionally with other variants reported in the statement. In the case of variant of uncertain significance (VUS) we do not recommend risk stratification based on the genetic finding. Furthermore, in the case VUS we do not recommend use of genetic information in patient management or genetic counseling. For some cases Blueprint Genetics offers a special free of charge service to investigate the role of identified VUS.

We constantly follow genetic literature adapting new relevant information and findings to our diagnostics. Relevant novel discoveries can be rapidly translated and adopted into our diagnostics without delay. These processes ensure that our diagnostic panels and clinical statements remain the most up-to-date on the market.

Find more info in Support
Download PDF

Full service only

Choose an analysis method

$ $ 1400
$ $ 1000
$ $ 1600

Extra services

Total $
Order now

ICD & CPT codes

CPT codes

SEQ81479
DEL/DUP81479


ICD codes

Commonly used ICD-10 codes when ordering the Spinal Muscular Atrophy Panel

ICD-10Disease
G12.1Spinal muscular atrophy

Accepted sample types

  • EDTA blood, min. 1 ml
  • Purified DNA, min. 5μg
  • Saliva (Oragene DNA OG-500 kit)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

Note that we do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue.

Subscribe to our newsletter